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The next procedure we cover is referred to as ANalysis Of VAriance (com-
monly abbreviated as ANOVA). More specifically, we will take up an applica-
tion known as one-way ANOVA. Many statisticians think of ANOVA as an
extension of the difference of means test because it’s based, in part, on a com-
parison of sample means. At the same time, however, the procedure involves
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a comparison of different estimates of population variance—hence the name
analysis of variance. Because ANOVA is appropriate for research involving
three or more samples, it has wide applicability.

In the field of experimental psychology, for example, researchers rou-
tinely look at results from three or more samples, often referred to as treat-
ment groups. One can easily imagine an educational psychologist wanting
to know if students exposed to three different treatment conditions or learn-
ing environments (positive sanction, negative sanction, and sanction neutral)
exhibit different test scores. Assuming the test scores are based on an interval/
ratio scale of measurement, ANOVA would be an appropriate approach to the
problem.

Similarly, a geographer might be interested in the growth rates of four
types of cities—manufacturing centers, government centers, retail centers, and
financial centers. A study along those lines would be another research problem
ideally suited for ANOVA.

What makes both of these problems appropriate for ANOVA is the fact
that they involve more than two groups or samples and a single variable that
has been measured at the interval/ratio level of measurement. It's true that re-
search problems like these can be approached with a series of t tests, and that
might be your inclination if you knew nothing about ANOVA. For example, the
geographer could conduct different ¢ tests—comparing the growth rates of
manufacturing centers with those of government centers, followed by a com-
parison with financial centers, and so forth—but there are inherent prablems in
that approach.

A study based on just four types of cities would turn into a series of six ¢
tests involving all the possible comparisons. Besides the added work of six in-
dividual tests, there’s the issue of Type I errors (rejection of the null hypothesis
when it is true). Without going into the mathematics of the situation, the fact is
that the probability of a Type I error would be magnified. Even though the
probability of a Type | error on any one of the six tests would be, let’s say, .05
(if that was the designated level of significance), it would increase well beyond
that for the six individual tests taken together. Given that, it's no wonder that
researchers commonly turn to ANOVA. In short, ANOVA allows the compari-
son of multiple samples in a single application. That should be apparent once
you consider the logic of ANOVA.

[¥] LEARNING CHECK

Question: ANOVA is appropriate for what types of research
situations?

Answer:  ANQVA is appropriate for situations involving three
or more samples and a variable measured at the
interval/ratio level of measurement.
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Before We

Up to this point, we've covered four specific hypothesis testing procedures.
First there was the hypothesis test involving a single sample mean, one proce-
dure with sigma (&) known and then another with sigma (&) unknown. Then we
shifted to situations involving the matched and related samples, followed by sit-
uations involving two independent samples. In sum, we looked at four situa-
tions and four hypothesis testing procedures.

If you'll take the time to reflect on that—the notion that we looked at four
situations and four hypothesis testing procedures—you’ll likely see the repeti-
tion that occurs in the field of statistics. Just to make certain that you grasp this
repetitive nature of hypothesis testing, let me urge you to think about it this
way: The underlying logic remains the same; what changes is the research sit-
uation. In other words, it's the research situation or problem that dictates what
procedure to use.

So, you ask, how does that relate to where we're going? The answer is
pretty straight-forward. We started out with research problems involving one
sample. Then we dealt with situations involving two samples. Naturally, not
every research situation falls into one of those categories; it's common to
encounter research situations that involve three or more samples. In a nutshell,
that’s where we're going in this chapter—research situations involving three or
more samples.

The Logic of ANOVA

Imagine for a moment that we want to know if scores on an aptitude test actu-
ally vary for students in different types of schooling environments—home
schooling, public schooling, and private schooling. This research question in-
volves a comparison of more than two groups. Assuming that the aptitude test
scores are measured at the interval/ratio level, the situation is tailor-made for
an application of ANOVA. We could easily think of our study as one that asks
whether or not aptitude test scores vary on the basis of school environment.

Another way to look at the question is whether or not type of school envi-
ronment is a legitimate classification scheme when it comes to the matter of
aptitude test scores. After all, to refer to students in terms of home, public, and
private schooling is to speak in terms of a classification scheme. If aptitude
test scores really do vary on the basis of school environment—if there is a
significant difference between the scores in the three enviranments—then it’s
probably legitimate to speak in terms of school environments when looking at
test scores. If there isn’t a significant difference between the scores, however, we
have to question the legitimacy of the classification scheme. In a sense, we were
also dealing with the legitimacy of a classification scheme in the last chapter,
particularly in reference to the test for independent sample. To suggest that two
groups are different with respect to some variable is, in fact, a way of suggesting
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that the members of the group or cases can reasonably be classified on the basis
of the variable in question. That said, let’s return to the topic at hand.

To understand how all of this relates to ANOVA, consider Figure 10-1.
Imagine that the three curves shown in Figure 10-1 represent the distributions
of aptitude test scores for three samples—a sample of home-schooled students,
a sample of public school students, and a sample of private school students.

The three distributions reflect three different means, but the means are
fairly close together, and there’s substantial variation in the scores within each
group. Additionally, there’s noticeable overlap in the distributions. The overlap
exists, in part, because of those factors taken together—the fact that there’s
substantial variation within each of the distributions, coupled with minimal dif-
ference between the means. (Technically, the proper phrase should be among
the means because the comparison typically involves three or more means, but
in the language of ANOVA, the phrase between the means is used nonethe-
less. It’s just a matter of statistical convention.)

Now consider the distributions shown in Figure 10-2. You'll note that the
means of the distributions in Figure 10-2 are very different, and there’s no
overlap between the three curves.

A grasp of ANOVA begins with an understanding of the different patterns
reflected in Figures 10-1 and 10-2. If there’s more variation between groups
than within groups (as suggested by the illustration in Figure 10-2), then there’s
support for the assertion that students in the different schooling environments
are different with respect to aptitude test scores. Conversely, the illustration in
Figure 10-1 would challenge the legitimacy of the classification scheme. Because
the means are fairly close together in Figure 10-1, and there is a decided or no-
ticeable overlap between the three samples (home-schooled students, public
school students, and private school students), it wouldn’t make much sense to
speak in terms of type of schooling environment when it comes to test scores on
the aptitude test.

A = Home schooling
B = Public schooling
C = Private schooling

Figure 10-1 Student Performance in Three Learning
Environments (Scenario #1)
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A = Home schooling
B = Public schooling
C = Private schooling

Figure 10-2 Student Performance in Three Learning Environments
(Scenario #2)

(4] LEARNING CHECK

Question: What are some ways to think about the purpose of
ANOVA? What does it measure?

Answer: It measures whether there’s more variation between
groups than within groups. It examines the legitimacy of a
classification scheme.

From Curves to Data Distributions

So far we've been speaking in rather general terms, with vague references to
variation within groups and equally vague references to the variation between
groups. Now it’s time to take a closer look at ANOVA and how it actually mea-
sures the amount of variation we’re considering. In essence, ANOVA allows
us to calculate a ratio of the variation between groups to the variation within
groups. This ratio is referred to as the F ratio (named after its developer,
Sir Ronald Fisher).

At the risk of jumping ahead, let me point you in the right direction here.
Assuming that we’re in search of significant results in a hypothesis-testing
situation, what we’ll be looking for is more variation between the means of
several groups, relative to the variation within the groups. In short, we’ll be
looking for more variation between than within. Because the F ratio is an
expression of the between-to-within ratio, we’ll be looking for a large F value.
All factors being equal, the larger our F ratio, the greater the probability that
we’'ll reject the null hypothesis.
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[ LEARNING CHECK

Question: What is the F ratio? What does it reflect?

Answer:  The F ratio is the test statistic calculated for ANOVA.
It is the ratio of the variation between the samples to
the variation within the samples.

The details of how we calculate the F ratio is something we’ll cover later.
Right now, the issue is the underlying logic. So let me give you some more ex-
amples, just to get you thinking on the right track.

A market researcher wants to determine if there’s a significant difference
between the response rates to five different marketing campaigns. In other
words, she wants to know if there’s more response rate variation between
than within the different campaigns. If there’s more variation in the
response rates between than within the campaigns, then it’s likely that
response rates really do vary by type of campaign.

A sociologist wants to determine if different types of school personnel
(teachers, counselors, and coaches) vary in their abilities to recognize

risk factors for youth suicide. Assuming he has some sort of interval/ratio
level scale to measure risk factor awareness, the question has to do

with how the scores on the scale vary by personnel classification. The
researcher would have to find more variation between different samples
(teachers, coaches, and counselors) than within the samples to suggest
that risk factor recognition actually varies by personnel classification.

By now you should be getting the message: We'll be looking for more vari-
ation between the samples than within the samples, at least if we're going to
achieve significant results. That, of course, brings us to the matter of how we
measure the variation. As you might have guessed, the concept of variation re-
lates to deviations from the mean. And that, in turn, brings us to the various
means we might consider.

The Different Means

We can begin with a look at Figure 10-3, but let me warn you in advance.
Figure 10-3 is rather abstract. There aren’t any values or scores or data of
any sort. There isn’t any information about a specific research question. It’s
all very abstract, but it’s that way for a reason. One of the best ways to
sharpen vour thinking about the logic of ANGVA is to think about it in purely
abstract terms.

Take a few moments to look at Figure 10-3, and even replicate the illus-
tration on a sheet of paper if you want to (just so you can add some of your
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Grand mean based on the sum of all
29 scores or values divided by 29
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Figure 10-3 The Various Means Involved in ANOVA

own notes or doodles). Figure 10-3 depicts four samples—Sample A, Sample B,
Sample C, and Sample D. It doesn't make any difference at this point what
those samples relate to. Each sample has its own distribution of scores or values
(represented by individual asterisks).

Note that there are 8 cases in Sample A, 5 cases in Sample B, 9 cases in
Sample C, and 7 cases in Sample D. Taken together, there are 4 samples and a
total of 29 cases. Remember: Each case could be a person (a total of 29 per-
sons), an organization (a total of 29 organizations), a city (a total of 29 cities), or
anything else. Each asterisk represents one case—an individual score or value.

Now think about the various means we could calculate. First, there’s a mean
for Sample A (based on 8 cases), a mean for Sample B (based on 5 cases), a
mean for Sample C (based on 9 cases), and a mean for Sample D (based on
7 cases). There are four samples, so there are four sample means.

So far we have four sample means, but there’s still another mean to con-
sider. We could, if we wanted to, calculate a grand mean—an overall mean
based on the 29 cases. We could add all of the individual scores or values (all 29
of them) and then divide by 29. The result would be an overall or grand mean.

Note that we wouldn't calculate the grand mean by adding the 4 sample
means and dividing by 4. We could do that if all the samples had the same number
of cases, but that's not what we have in this example. Instead, we have 4 samples,
and each sample has a different number of cases. Each sample mean, or group
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mean, is a function, in part, of the number of cases in the sample. Therefore, we
can't treat them equally (which is what we would be doing if we simply added the
4 means and divided by 4).

Take another look at Figure 10-3. Even though it's very abstract, think
about what the illustration reveals—the notion of a grand mean, as well as a
mean for each sample.

LEARNING CHECK

Question: What two types of means come into play in ANOVA?
Answer:  The grand mean and the individual sample means.

Let me suggest that you spend some time reviewing Figure 10-3 to grasp
the notion of a grand mean, along with the individual sample means. The dif-
ferent means are highlighted in the illustration. Once you've done that, we can
move to the question of variation and how we measure it.

From Different Means to Different Types of Variation

To understand the matter of variation, think back to the idea of the deviation of
a score or value from a mean (a concept introduced in Chapter 3). The concept
of variation typically involves the extent to which various scores in a distribution
deviate from the mean of the distribution. We can easily apply the same idea to
the problem we're considering here.

Let’s start with the sample or group means. We'll begin with Sample A. We
already know that Sample A has a mean based on the scores from eight cases,
so it's easy to think in terms of how far each of the eight scores or values deviates
from the mean of Sample A. For an illustration of that point, take a look at the
first column in Figure 10-4.

Scores in Scores in Scores in Scores in
Sample A Sample B Sample C Sample D
* * * * _\
M % —| ] Meanof X x\\
N || Sample B N T~ Mean of
*—1_| Mean of * * w—1
™ Mean of __ {Sample D
% —7r— Sample A * * s le C ¥
*/:; X% T ample *7
| {
* * - *
* * '
e

Figure 10-4 Illustration of Within-Groups Variation (Deviation of Individual Sample Scores

from the Mean of the Sample)
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Figure 10-4 is much the same as Figure 10-3, but with some added infor-
mation. It illustrates the notion that each score or value in Sample A deviates
by some amount from the mean of Sample A. Moving across to Samples B, C,
and D, we encounter the same idea again and again. Each sample has a mean
and individual scores or values within each sample deviate or vary from the
sample mean. In other words, there is a certain amount of variation associated
with each sample. This sort of deviation is what we mean by within-groups
variation.

Now let’s turn our attention to another form of variation. You'll recall from
our previous discussion that we could obtain a grand mean by adding all the
scores and dividing by 29 (since there are 29 cases or scores in our example).
Assuming we did that, we could then calculate the difference between the mean
of each sample and the grand mean—another form of variation. To get a
picture of this sort of variation, take a look at Figure 10-5.

As shown in Figure 10-5, the mean of Sample A deviates a certain num-
ber of points from the grand mean, the mean of Sample B deviates a certain
number of points from the grand mean, and so on. This sort of deviation is
what we mean by between-groups variation.

Your success in understanding the ANOVA procedure will largely depend
on your ability to fully comprehend these two forms of variation, so let me urge
you to take a dark room moment at this point. Allow yourself to think in totally
abstract terms—three samples, or seven samples, or whatever number suits you.

Scores in Scores in Scores in Scores in
Sample A Sample B Sample C Sample D
* * » * *

* ¥ * *
¥ * ¥ *

% % M %

* * * *

5 * *

% Mean of "y *

" Sample B s
* Mean of
Mean of Sample D
Sample A Mean of
Sample C

Grand mean
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Also allow yourself to think in terms of however many cases you want to have
in each sample. Imagine that you've calculated a mean for each sample or
group, and you've calculated a grand or overall mean. The specifics aren’t im-
portant at this point. What’s important is the notion of two forms of variation.
First, there’s the variation of scores or values from the individual sample
means. Then, there’s the variation of each sample mean from the grand mean.

Whenever you think about the variation of individual scores from a sample
mean, remind yourself that you’re thinking about within-groups variation (sim-
ply the variation within each sample). Whenever you think about the variation
of a sample mean from the grand mean, remind yourself that you're thinking
in terms of between-groups variation (or the variation of each sample mean
from the grand mean). Repeat the process over and over with different mental
images. Repeat the process until you're totally comfortable with the concepts
of within-groups and between-groups variation. Assuming you’ve spent suffi-
cient time thinking about those concepts, we can move on to a statement of
the null hypothesis.

[] LEARNING CHECK

Question: What is between-groups variation, and what is within-
groups variation?

Answer:  Between-groups variation is an expression of the
amount of deviation of sample means from the grand
mean.Within-groups variation is an expression of the
amount of deviation of sample scores from sample
means.

The Null Hypothesis

To understand the null hypothesis that's appropriate in the case of ANOVA,
let’s take up a less abstract example. Let’s say, for example, that we're inter-
ested in urban unemployment and whether or not the unemployment levels in
cities vary by region of the country. Let’s also assume that we’ve used a ran-
dom sampling technique to select cites in four different regions, and we've
recorded the unemployment levels (measured as the percentage of the labor
force currently unemployed in each city). Further, let’s assume that we've cal-
culated a group mean for each region (four means, one for each of the re-
gions), and an overall mean (based on the unemployment levels in all the cities
in our study). The null hypothesis for our study simply states that the means of

the regions are equal. It can be stated symbolically as follows:

Ho: th = = s = 14
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In terms of the F ratio, recall that there has to be more variation between
the regions than within the regions for the F ratio to be significant. It all goes
back to the notion that the F ratio is an expression of the ratio of the variation
between groups to the variation within groups; the larger the F ratio, the more
likely it is to be significant. If all the sample means were equal, there wouldn’t
be any between-groups variation. That, of course, is the situation described by
the null hypothesis.

We'll eventually calculate the F ratio (our test statistic) as a test of the null
hypothesis, and we’ll arrive at a conclusion. If our calculated test statistic (the
F ratio) meets or exceeds the critical value, we'll reject the null hypothesis (with
a known probability of having committed a Type 1 error). All of that will even-
tually unfold as we work through an application of ANOVA, so that’s where
we'll turn next.

The Application

We'll begin our application by looking at the data presented in Table 10-1.
The table presents the unemployment data for cities in four regions, described
in the previous scenario. The same assumptions we encountered in the dif-
ference of means test apply in this case—namely, that the unemployment
levels (expressed as a percentage of the labor force) represent interval/ratio
level data and that the cities were randomly selected. Following the normal
convention, we want to select a level of significance in advance, so we’ll set
that at .05.

Take a few moments to examine the data presented in Table 10-1. First,
take note that the sample sizes are different. ANOVA doesn’t require the different

Table 10-1 Levels of Unemployment by Region

North South East West
3.8 4.2 8.8 4.8
7.1 6.5 5.1 1.2
9.6 4.4 12.7 8.0
84 8.1 6.4 94
5.1 7.6 0.8 3.6
116 5.8 6.3 8.7
6.2 4.0 10.2 6.5
7.9 7.3 8.5
9.0 5.2 11.9
103 48 8.6 Sample mean
X-790 X-579 X-88 X-= .
n=10 n=10 n=10 n=7 -et———— Number of cases
in a given sample
Grand (Overall) Mean = 7.23
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samples to be based on the same number of cases. Second, give some thought
to what an informal inspection of the data suggests. The levels of unemployment
appear to be relatively high in the northern region, but that’s also the case in the
eastern region. In contrast, the levels of unemployment in the southern and
western regions appear to be somewhat lower.

Apparent differences here or there might suggest that it’s reasonable to speak
in terms of regional variation (at least when it comes to levels of unemployment),
but the mere appearance of variation isn’t enough in the world of statistical analy-
sis. What's required is a measure of variation that is precise—and that’s what the
ANOVA procedure is all about. ANOVA allows us to go beyond mere visual in-
spection of the data and to accurately measure the ratio (F ratio) of between-
groups variation to within-groups variation. With ANOVA applied to the problem,
we'll be in a position to arrive at a conclusion grounded in measurement.

With all of that as a background, we can begin the calculation of the
F ratio. Up to this point, I've been using the term variation in a very general
sense. As it turns out, what we’re actually going to calculate are two estimates
of variance. More specifically, we're going to develop an estimate of the
between-groups variance and an estimate of the within-groups variance. In
other words, the F ratio will be an expression as follows:

Estimate of between-groups variance
Estimate of within-groups variance

F ratio =

The process used to develop the estimates isn't difficult, but it is a little te-
dious (particularly if you calculate them by hand, as opposed to relying on a
computer and some statistical software). Much of the complexity can be re-
duced, however, if the process is broken down into its component parts:

1. Calculate what’s known as the sums of squares.
2. Convert the sums of squares to estimates of variance.

The process sounds more complicated than it really is, so don’t be dis-
couraged. First, we’ll approach everything in a step-by-step fashion. Second,
the process is remarkably similar to one we encountered earlier, in Chapter 3,
when we first encountered the concept of variance. Just as we did in Chapter
3, we'll start with a calculation of the squared deviations—what we refer to in
ANOVA as the sum of squares.

Calculating the Within-Groups Sum of Squares (SS,,)

My preference is always to begin with the calculation of the within-groups
sum of squares (SSy), simply because it is a bit more straightforward than the
calculation of the between-groups sum of squares. We begin the process by
focusing on the mean of each sample in our study. The mean unemployment
level for each region is shown at the bottom of each column in Table 10-1,

along with the number of cases.
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First, we'll focus on the extent to which the level of unemployment for
each city in a particular region deviates, or varies, from the regional mean. For
example, we’ll look at the extent to which the unemployment level for each city
in the southern region deviates from the mean for that region, the extent to
which the unemployment level for each city in the northern region deviates
from the mean of that region, and so on. We will get a measure of the devia-
tion by subtracting the regional mean from the unemployment level of each city
within that region. In other words, we’ll get a mathematical expression of the
deviation through a simple process of subtraction.

As you learned in Chapter 3, however, the sum of the deviations from the
mean always equals 0, so we’ll have to square the deviations. Then we’ll sum
the squared deviations in each region to obtain the sum of squares for each re-
gion. In other words, each region will eventually have its own sum of squared
deviations. Finally, we’ll add up all the sums of squares for all the regions. This
total will be the within-groups sum of squares (SSy).

This portion of the ANOVA calculation is illustrated in Table 10-2. As you
can see, the result of the within-groups sum of squares calculation is 179.29
(SSy = 179.29).

| suspect you'll agree that the expression within-groups sum of squares is
an apt phrase. After all, the process consists of calculating deviations, squar-
ing the deviations, and summing the squared deviations across the different
samples. The individual steps in the computation of the SSy; are shown below.
Note how these steps correspond to the computations reflected in Table 10-2.

SSy = (3.8-7.90)? + (7.1 -7.90)? + (9.6 — 7.90)% + (8.4 — 7.90)? + (5.1 — 7.90)
+(11.6-7.901 + (6.2 = 7.90)? + (7.9 - 7.90)? + (9.0 — 7.90)? + (10.3 - 7.90)%
+(4.2-5.797 + (6.5 - 5.79)* + (4.4 - 5.79F + (8.1 = 5.79)? + (7.6 — 5.79)*
+(5.8-5.79% + (4.0 - 5.79 + (7.3 - 5.79) + (5.2 - 5.79)? + (4.8 - 5.79)
+(8.8-8.831% + (5.1 - 8.83)% +(12.7 - 8.83)%+ (6.4 - 8.83)? + (9.8 - 8.83)2
+(6.3-8.832 +(10.2-8.83)? + (8.5-8.83)2 + (11.9 - 8.83)? + (8.6 — 8.83)?
+(4.8-6.03)% + (1.2 - 6.03)* + (8.0 - 6.03)* + (9.4 - 6.03)* + (3.6 - 6.03)*
+ (8.7 - 6.03)% + (6.5 - 6.03)

= 51.98 + 20.39 + 53.59 + 53.33
= 179.29

I:l LEARNING CHECK

Question: What is the symbol for the within-groups sum of
squares,and how is it calculated?

Answer:  The symbol is S5y It is calculated by finding the devia-
tion of each score in a sample from the sample mean,
squaring the deviations, adding the squared deviations for
each sample,and summing across all the samples.
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Calculating the Between-Groups Sum of Squares (SS;)

Now we turn to the between-groups element. The grand mean (7.23) was re-
ported in Table 10-1, along with the mean for each region. To calculate the
between-groups sum of squares (SSg), we'll follow a procedure similar to
the previous one, but with a slight hitch in the process. Let me explain.

As noted previously, this part of the ANOVA procedure requires that we
calculate the deviation (or, more correctly, the squared deviation) of each re-
gional mean from the grand mean and sum those squared deviations across the
regions. This will give us our between-groups sum of squares (SSg). Unfortu-
nately, however, it's not as straightforward as it might appear at first glance. As
it turns out, we have to take into account the number of cases that went into
the production of each regional mean. In other words, a regional mean based
on 10 cases is one thing, but a regional mean based on, let’s say, 7 cases is a
different matter. Here’s why.

We're going to focus on how far each regional mean departs from the
grand mean, but we have to start by recognizing that the grand mean was, in
part, a function of the total number of cases spread over several regions.
Different regions, however, made different contributions to the grand mean.
Three regions contributed 10 values or cases each, but another region (the
western region) contributed only 7 values or cases. It’s only appropriate, there-
fore, that we take into account the different contribution of each region as we
move forward with our calculations. We’ll do that by weighting our results by
the number of cases in each region.

Yes, we're going to subtract the grand mean from the mean of each region
to obtain a deviation. Then we’re going to square that deviation. But then
we're going to weight the result. We do that by multiplying the squared devia-
tion of each region by the number of cases in the region. To better understand
this weighting procedure, take a close look at Table 10-3.

As shown in Table 10-3, we subtract the grand mean from each regional
mean, square the deviation, and then multiply it by the number of cases in that
region. Finally, we sum across the regions to obtain the between-groups sum
of squares (SSg). Remember: We need to take into account the number of
cases that were involved in the production of each sample or group mean.
Therefore, we weight each group’s squared deviation by the number of cases
in the group. This important step is one you have to take, even if all the groups
or samples have an equal number of cases.

The computations underlying the SS; are summarized below. My sugges-
tion is that you make a thorough study of those computations, as well as the
details of Table 10-3. Once you do that, you'll be in a better position to see
how we arrived at a between-groups sum of squares 60.88 (SS; = 60.88).

SSg = 10(7.90 - 7.231 + 10(5.79 - 7.23) + 10(8.83 — 7.23)2
+7(6.03 - 7.23)2

=450+ 20.70 + 25.60 + 10.08
= 60.88
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Table 10-3 Calculating the Between-Groups Sum of Squares

Grand Mean = 7.23

North South
SSg = n(X — Xgrana)? SSg=n(X — Xgam)?
=10(7.90 — 7.23)% =10(5.79 — 7.23)2
= 10(0.67) =10(-1.44)*
=10(0.45) =10(2.07)
=4.50 =20.70
Mean of North = 7.90 Mean of South = 5.79
n=10 n=10
East West
SSg = n(X — Xgoal? SSg = n(X — Xguna)?
=10(8.83 — 7.23) =7(6.03 — 7.23)
=10(1.60)2 = 7(-1.20)%
=10(2.56) =7(1.44)
= 25.60 =10.08
Mean of East = 8.83 Mean of West = 6.03
n=10 n=7

SS8; =4.50 + 20.70 + 25.60 + 10.08 = 60.88

(4] LEARNING CHECK

Question: What is the symbol for the between-groups sum of
squares, and how is it calculated?

Answer:  The symbol is SSg. It is calculated by finding the deviation
of each sample mean from the grand mean, squaring the
deviation, weighting the squared deviation for each sam-
ple,and summing across all the samples.

Even if you feel totally comfortable with the notion of the between-groups
sum of squares concept, let me suggest that you take a short break at this point.
We've covered quite a bit. Spend a little time thinking about the sum of squares
within (SSy;) and the sum of squares between (SSg). Concentrate on how you
calculated each, and think of these as the first important steps toward the
computation of the F ratio. Take whatever amount of time is necessary—
there’s still another important step ahead.
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From Sums of Squares to Estimates of Variance

Assuming you took the suggested break, our next task is to transform the two
sum of squares elements (SSg and SSy) into estimates of variance. It's actually
a simple process. All we have to do is divide each sum of squares element (SSg
and SSy)) by an appropriate number of degrees of freedom. The procedure is
essentially the same as the calculation of the variance for a sample (as pre-
sented in Chapter 3). Let me urge you to review that chapter if you sense
you’'re unsure about any of this. The estimates of variance are referred to as the
mean square between (MSpg) and the mean square within (MSy). Just to
solidify the two in your thinking, they are summarized as follows:

MS;, = mean square between (an estimate of the between-groups variance)
MSy; = mean square within (an estimate of the within-groups variance)

[¥] LEARNING CHECK

Question: What do the mean square between and mean square
within represent?

Answer:  The mean square between is the estimate of the
between-groups variance.The mean square within is
the estimate of the within-groups variance.

Question: What are the symbols for the mean square between
and mean square within?
Answer:  The symbols are MS; and MS,,, respectively.

Since the fundamental nature of the ANOVA procedure can sometimes get
lost in the midst of different symbols and notations, let’s take a moment to
review where we've been and where we're going:

1. The goal is to calculate an F ratio.

2. The F ratio is the ratio of an estimate of the between-groups
variance to an estimate of the within-groups variance.

3. These estimates are derived through a two-step process.
a. First, we compute sums of squares (between and within).
b. Then we transform the sums of squares to estimates
of variance (known as mean squares).

4. The F ratio is derived by dividing the estimate of the between-
groups variance (MSg) by the estimate of the within-groups
variance (MSy).
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Note that we haven't executed Steps 3b and 4 just yet; those will be our final
steps.

Since we already have our within-groups and between-groups sums of
squares, our next task is to convert the sums of squares into the mean squares,
or estimates of variance. As a prelude to that, a little review of the variance is
in order.

The Concept of Variance. Think back to what you learned in Chapter 3
about the variance of a distribution. Recall that the variance allowed us to get
around the problem that the sum of the deviations from the mean always
equals 0. You'll probably also recall how the variance was computed, both for
a population and a sample. You learned that the variance for a population was
computed as follows:

— )2
Variance of a population = E:(XT#)
Looking carefully at the formula for the population variance, you'll note
that the numerator actually amounts to the sum of squared deviations (not un-
like the sum of squares we’ve been discussing so far), and the denominator is
simply the number of cases in the population (IN).

When it came to the variance of a sample, however, we introduced a slight
correction factor. Instead of using N in the denominator, we used n — 1 (or the
degrees of freedom). The denominator n — 1 (degrees of freedom) was used in
an effort to arrive at a sample variance that would be a more accurate estimate
of the population variance. If your memory is a little faulty on this point, let me
suggest you take the time to review the material in Chapter 3. My guess is that
it will be important to your understanding of what we encounter next.

Assuming you've taken that time, or you feel secure without the review,
let’s focus now on the estimates of variance that we're going to develop. First
we’ll develop an estimate of the between-groups variance. Then we’ll develop
an estimate of the within-groups variance. Both estimates are developed in
much the same way.

First, the between-groups estimate of variance (known as the mean
square between or MSp) is derived by dividing the between-groups sum of
squares (SSp) by the appropriate number of degrees of freedom (dfg). Then the
within-groups estimate of variance (known as the mean square within, or
MSy) is derived by dividing the within-groups sum of squares (SSy;) by the ap-
propriate number of degrees of freedom (dfy). The process can be summarized
as follows:

Between-Groups Estimate of Variance
Between-Groups Sum of Squares (SSg)

Meair Sdtiste Befween (Més) ~ Between-Groups Degrees of Freedom (dfg)
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Within-Groups Estimate of Variance

Within-Groups Sum of Squares (SSy/)

Mean;Sauare:Within (M) = Within-Groups Degrees of Freedom (dfy)

Obviously, we have to determine the appropriate number of degrees of
freedom for each element, so that’s where we’ll turn now.

Degrees of Freedom. For this portion of the discussion, let’s start with the
between-groups sum of squares. Think back for a moment to how we com-
puted the between-groups sum of squares (SSg). If necessary, review the
computations outlined in Table 10-3 and the associated discussion. First, we
calculated the deviation of each sample mean from the grand or overall mean.
Then, we squared the deviations. Next, we multiplied the squared deviation for
each sample by the number of cases in each sample. Finally, we summed the
squared deviations (multiplied by the number of cases in the sample) across all
the samples. The result (the between-groups sum of squares) was 60.88.

The problem we’re considering here involves four samples (four regions).
In the language of ANOVA, the four samples represent four categories (sym-
bolized by k = 4). The number of degrees of freedom associated with the
between-groups estimate of variance (dfg) is k — 1. Since we have four cate-
gories, the between-groups degrees of freedom can be calculated as follows:

dfg=k-1
dfs=4-1
dfs =3

LEARNING CHECK

Question: How many degrees of freedom are associated with the
between-groups estimate of variance (MSg)?

Answer:  The number of degrees of freedom for MSy is k — |, where
k = the number of categories or samples in the study.

To obtain our between-groups estimate of variance (MSg), we'll simply
divide our between-groups sum of squares (SSgz = 60.88) by the between-
groups degrees of freedom (dfg = 3).

MS; = ifg
MS, - 601.388

MSg = 20.29
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At this point, you should note how closely this relates to the notion of using
n — 1 in the computation of the sample variance to obtain an unbiased estimate
of the population variance.

[ LEARNING CHECK

Question: How is the between-groups estimate of variance (MSg)
obtained?

Answer:  The between-groups estimate of variance (MSg) is ob-
tained by dividing the between-groups sum of squares
(5Sg) by the between-groups degrees of freedom (dfy).

Our next step is to develop our within-groups estimate of variance, and
we'll use a similar procedure—we’ll divide the within-groups sum of squares by
an appropriate number of degrees of freedom. Now, of course, the question is
how to determine the appropriate number of degrees of freedom for the
within-groups element.

The degrees of freedom in the case of the within-groups sum of squares is
a function of the total number of cases, as well as the number of samples or
categories. In the present instance, we have a total of 37 cases spread over
four categories. The appropriate number of degrees of freedom for the
estimate of within-groups variance is equal to n,,; — k, or the total number of
cases minus the number of categories. With 37 cases and four categories, the
within-groups degrees of freedom (dfy;) can be calculated as follows:

dfw = Nyt — k
dfy=37-4
dfyw =33

If you take a close look at the formula for the within-groups degrees of
freedom (n,,, — k), you'll see that it’s actually equal to the sum of the number
of cases in each sample minus 1:

(n- 1)+ (ny—1) + (n3— 1) + (n, — 1) = 33
(10-1)+(10-1)+(10-1)+(7-1)=9+9+ 9 + 6= 33

[] LEARNING CHECK

Question: How many degrees of freedom are associated with the
within-groups estimate of variance (MS,,)?

Answer:  The number of degrees of freedom for MSy, is n,, —
where n, ., = the number of cases in the study and
k = the number of categories or samples in the study.

k
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Having determined that the appropriate number of degrees of freedom for
the within-groups sum of squares is equal to 33, we can calculate the within-
groups estimate of variance, or MSy;, as follows:

SSw
MSy =——
W dfy
179.29
MSy = 33
MSy = 5.43

[¥] LEARNING CHECK

Question: How is the within-groups estimate of variance (MSy,)
obtained?

Answer:  The within-groups estimate of variance (MSy) is
obtained by dividing the within-groups sum of
squares (SSy,) by the within-groups degrees of
freedom (df,).

We've already been through several steps, so let me suggest that you take
alook at Table 10-4. This summary table outlines the important elements we’ve
encountered along the way and gives you a look ahead toward the final step.

Calculating the F Ratio

Having developed the estimates of the between-groups variance (MSg = 20.29)
and within-groups variance (MSy, = 5.43), we're now in a position to calculate
the F ratio. This ratio is obtained by dividing the between-groups estimate of
variance (MSp) by the within-groups estimate of variance (MSy). The calculation
is as follows:

MSg
F- MSyw
20.29
F-%13

F=3.74
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Table 10-4 Components of ANOVA

Group or Sample Means

Mean of Northern Cities = 7.90 n=
Mean of Southern Cities = 5.79 n=
Mean of Eastern Cities = 8.83 n=
Mean of Western Cities =6.03 n

Grand Mean = 7.23

— Calculate the Sums of Squares

Between-groups sum of squares (SSp) = 60.88
Within-groups sum of squares (SSy,) =179.29

............. Degrees of Freedom

Between-groups degrees of freedom (dfg) =3
Within-groups degrees of freedom (dfy,) =33

— Divide Sums of Squares by Appropriate Degrees of Freedom to Obtain the
[~ Estimates of Variance (the Mean Square Component)

Between-groups estimate of variance, or mean square between (MSg) = 20.29
Within-groups estimate of variance, or mean square within (MSy) =543
MSg

MSy,

— Calculate the F Ratio

[4] LEARNING CHECK

Question: How is the F ratio calculated?
Answer: The F ratio is calculated as follows:

MSg
MSy

So, the calculated F ratio (our test statistic) equals 3.74. We have a final
answer—but what does it really mean? By now, you should find yourself in very
familiar territory. After all, it’s really just another hypothesis-testing situation.

The Interpretation

As we've already done in what probably seems like countless situations before,
we find ourselves looking at a calculated test statistic—in this case, an F ratio.

But now the question is whether or not the F ratio is significant. As before, the
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answer turns on the critical value. If our calculated test statistic (the calculated
value of F) meets or exceeds the critical value, we have significant results, and
we can reject the null hypothesis. If, on the other hand, our calculated test sta-
tistic falls below the critical value, we'll fail to reject the null hypothesis.

Interpretation of the F Ratio

Our next task, then, is to locate the critical value. For that information, we turn
to Appendix D: Distribution of F at the .05 Level of Significance (the level of sig-
nificance that we selected at the outset). Once again, to use the table we have to
take into account our degrees of freedom. We know that the degrees of freedom
associated with the between-groups estimate of variance is 3, and the degrees of
freedom associated with the within-groups estimate of variance is 33.

If you take a close look at Appendix D, you’ll note that the degrees of free-
dom for the between-groups variance element (the numerator in the F ratio) are
listed across the top row of the table. The degrees of freedom for the within-
groups variance element (the denominator in the F ratio) are listed in the first
column. Once we've identified the appropriate degrees of freedom in the top
row and first column, we locate the point at which the two intersect in the table.
Note, however, that there is no listing for 33 degrees of freedom. At this point,
you should recall our earlier rule of thumb (noted in Appendix B)—namely, find
the next lower number of degrees of freedom. Therefore, you should use the
value associated with 30 degrees of freedom. That value—2.92—is our appro-
priate critical value.

All that remains is to compare our calculated F ratio to the critical value. As
it turns out, our calculated F value of 3.74 exceeds the critical value. Therefore,
we reject the null hypothesis. As before, we’re rejecting the null hypothesis with
a known probability of having committed a Type I or alpha error (.05).

In rejecting the null hypothesis, we move a step toward suggesting that lev-
els of unemployment in cities do vary by region. That, of course, is another way
of saying it’s probably legitimate to think in terms of a regional classification
scheme when speaking about levels of unemployment.

Had we failed to achieve significant results, however, we would have failed
to reject the null hypothesis. Since the null was a statement that the means
would be equal, failing to reject the null would be tantamount to saying that
there is no significant variation across the regions. In that case, it wouldn't
make much sense to speak in terms of regional variation.

Whatever the final outcome of an ANOVA application, it's always im-
portant to keep in mind what the bigger picture is all about. As we've done
before, we return to the central notion that what we’re really interested in are
populations—not samples. In this instance, our interest was in the population
of all cities in the northern region, all cities in the southern region, all cities in
the eastern region, and all cities in the western region. That we had sample
data to work with was important in reaching our final goal, but we were ulti-
mately interested in the larger picture.
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Working at the .05 level of significance, we determined that we could reject
the null hypothesis. Is it possible that the results of the sample data gave us a
false picture? Yes, of course that’s possible. There’s always a chance that the
ratio of our estimates was the result of sampling error and that the calculated
F ratio isn’t a reflection of what's really going on in the population. If that’s
what happened, then we would have made a Type I error.

As we know all too well, however, we'll never know if that was the case.
That’s just the way it is, and there’s no getting around it (short of collecting
data on all cities). We always have to live with the chance of a Type I error. On
the positive side, however, we always know the probability that we've made
such an error. In the case of our example, it was only 5 times out of 100.

Had we wanted to, we could have set our level of significance at .01, and
that would have reduced the probability of a Type [ error. In fact, that’s what
Appendix E is all about; it shows the Distribution of F at the .01 Level of Sig-
nificance. A quick check of the appropriate critical value in Appendix E would
tell us that our results were not significant at the .01 level. In other words, had
we been working at the .01 level of significance, we would have failed to reject
the null hypothesis. In this case, however, we were working at the .05 level of
significance, and our results were significant. As a result, we were in position to
reject the null hypothesis.

If you think about the ANOVA procedure for any length of time, you're apt
to conclude that it only gives us a general picture regarding the null hypothesis.
ANOVA allows us to determine whether or not there’s a significant difference
across groups or samples, but it doesn’t tell us much about the specific nature
of any difference. As Gravetter and Wallnau (1999, p. 338) note:

When you reject the null hypothesis, you conclude that the means are not
all the same. Although this appears to be a simple conclusion, in most cases
it actually creates more questions than it answers.

To better understand that observation, think back to our interpretation of
the F ratio in the problem we just considered. We found a significant F ratio,
but the conclusion left the door open to further questioning. Recall how the
conclusion was phrased: It is probably legitimate to think in terms of a regional
classification scheme when speaking about levels of unemployment. But ques-
tions still remain as to what produced the significant F ratio in the first place.
To get the answers to those questions, a statistician typically turns to post hoc
testing procedures.

Post Hoc Testing

As the expression implies, post hoc testing allows us to go beyond the deter-
mination that we have a significant F ratio. As noted previously, a significant
F ratio does not necessarily mean that there was a significant difference
between all means when examined in terms of all possible combinations.
Maybe the difference between the means of the first and second samples was
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so large that it had a major impact on the calculation of the between-groups
variation. On the other hand, maybe it was an unusually large difference be-
tween the means of the third and fourth samples. Maybe the significant results
derived from noticeable differences between all the means. In short, having
significant results is one thing; understanding the origin of the significance is
another.

Fortunately, procedures are available that allow us to peel back the find-
ings, so to speak, and gain a better understanding of which differences of
means were really responsible for the final F value. Tukey's Honestly Signifi-
cant Difference (HSD) is such a procedure. It is considered a post hoc test, in
that it's employed after significant results are found. In short, Tukey’s HSD
allows us to determine where the significant differences between individual
means are to be found.

The HSD procedure involves the calculation of what’s known as the @ sta-
tistic. It rests on a pair-by-pair comparison of sample means. In the example
used throughout this chapter, we have four samples and, therefore, four sam-
ple means. The HSD procedure applied to our problem would involve the fol-
lowing six comparisons:

Mean of Sample 1 and Mean of Sample 2
Mean of Sample 1 and Mean of Sample 3
Mean of Sample 1 and Mean of Sample 4
Mean of Sample 2 and Mean of Sample 3
Mean of Sample 2 and Mean of Sample 4
Mean of Sample 3 and Mean of Sample 4

The calculation of Q is fairly straightforward. It is calculated once for each
comparison, so in this case, Q will be calculated six times.

For each comparison, we calculate the absolute difference (the difference
without regard to positive or negative sign) between the two sample means.
This absolute difference becomes the numerator in the test statistic (Q). The de-
nominator is partly a function of the MSy, that was calculated in the ANOVA
procedure. There are actually two different ways to calculate the denominator
of the @ statistic. One version is for situations in which the sample sizes are
equal; the other version is appropriate for ANOVA applications with unequal
sample sizes. The example we considered in this chapter was based on un-
equal sample sizes, but here are both formulas.

When All Sample Sizes Are Equal
Xy — X,

MS,, Where X; and X, are any two means and n represents
= the number of cases in each sample.
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When Any Two Samples Sizes Are Unequal

o Fi-%d o
~ MS Where X; and X, are any two means and 7i represents
% the harmonic mean sample size. The harmonic mean is

calculated as follows:

k

1 1 1 1
—+—+ —+ —
ny ng na ng

ﬁ:

Since our example involves unequal sample sizes, we will use the second
formula for Q. We'll start by calculating the harmonic mean. Recall that the for-
mula for the harmonic mean is as follows:

k

1 1 1 1
— =+ —+—
n; Ng na ng

Since we have four samples (groups or categories), the harmonic mean is
calculated as follows:

. k
1 1 1 1
— =+ =+ =
ny na ns ng
~ 4
_1+i+i+1
10 10 10 ' 7

4

=~ 10+ 10+ .10 + .14
4

T 044

-9.09

Armed with the value of the harmonic mean (fi = 9.09), our next step is to
bring in the mean square within (MSy). Our previous ANOVA computations
tell us that MSy; = 5.43. We now divide the MSy, (5.43) by the harmonic mean
(9.09) and take the square root of the result. This gives us the denominator for
our calculation of Q.

S
Denominator in Q calculation = _ﬁw

15.43
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Having calculated the denominator for our Q statistic, we can move through
the remainder of the computations with relative ease. For each comparison, it is
simply a matter of finding the absolute difference between two means, treating
that value as the numerator, and dividing by the denominator that we just calcu-
lated. The steps in the process are summarized in Table 10-5.

As the summary indicates, we now have six Q values, or six different cal-
culated Q test statistics. Each calculated @Q test statistic relates to a particular
comparison of means. Now all that remains is to examine whether or not the
Q test statistic in question is significant for each individual comparison. That
brings us to the matter of the critical value for Q—the value against which we
will evaluate the individual Qs that we've calculated.

Appendix F provides the critical values of @ at the .05 level of significance.
(If we were working at the .01 level of significance, we would use Appendix G.)
The numbers across the top of the table refer to the number of groups or
samples in the ANOVA that preceded application of the HSD measure. Since
our problem is based on four samples or groups (northern, southern, eastern,
and western cities), our focus will be on the column labeled 4. The within-
groups degrees of freedom (dfy) is something we dealt with earlier. You will
recall that the appropriate number of degrees of freedom for the within-groups
element was n — k, or the total number of cases (37) minus the number of cat-
egories or groups (4). Therefore, the number of degrees of freedom within is
37 -4, or 33. As before, the table has no entry for 33 degrees of freedom, but
we are safe in using the row for 30 degrees of freedom. The entry associated
with 30 degrees of freedom and four samples is 3.85—and that becomes our
critical value.

Now all that remains is to compare the various Q values that we calcu-
lated to the critical value of @ found in Appendix F. The results are shown in
Table 10-6.

Having calculated Q for each comparison and having checked each against
the critical value (3.85), we determine that the only significant difference is
found between the southern region and the eastern region. It is not the case

Table 10-5 Calculation of Q for Tukey’s HSD

Possible Comparisons X; — Xy Q= M
MSy
il
North and South [7.90-5.791 = 2.11 211/0.77 =274
North and East 17.90-8831 =093 0.93/0.77=1.21
North and West 17.90-6.031 = 1.87 1.87/0.77 =2.43
South and East 156.79-8.831 = 3.04 3.04/0.77 = 3.95
South and West 15.79-6.031 =0.24 0.24/0.77 = 0.31
East and West 18.83-6.031 =280 2.80/0.77 = 3.64
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Table 10-6 Interpreting Tukey’s HSD

Possible Comparisons Q Results
North and South 2.74 Not Significant
North and East 1.21 Not Significant
North and West 2.43 Not Significant
South and East 3.95 Significant
South and West 0.31 Not Significant
East and West 3.64 Not Significant

that there is a significant difference across all regions. Rather, the significant
difference is found only between two regions.

A finding like that would, no doubt, send us back to the drawing board,
at least when it comes to the matter of a regional classification scheme. In a
real-life situation, now would be the time to consider other types of regional
classifications—maybe, for example, one that rests on only three designated
regions of the country.

Questions like that are for another time and place. It’s time to bring our dis-
cussion of one-way ANOVA to a close. Before leaving the topic, though, it
might be useful to review several points and to underscore a few things you
may want to think about.

m Think about ANOVA as being appropriate in situations involving three or
more samples, provided you have interval/ratio level data to work with.

m Think about the fact that ANOVA can be appropriate even if the samples
have an unequal number of cases.

m Think about the F ratio as a ratio of two estimates of variance—the esti-
mate of variance between groups and the estimate of variance within
groups.

m Think about how the computation of the F ratio is essentially a two-step
process—first the calculation of between and within sums of squares, and
then a transformation of the sums of squares into estimates of variance.

m Think about how degrees of freedom come into play in the transformation
of the sums of squares into the estimates of variance, with k — 1 degrees of
freedom for the estimate between, and n — k for the estimate within.

At the conclusion of this chapter you’ll find several problems to consider.
Some problems direct you to calculate the F ratio from beginning to end. Many
of the problems, though, just pose questions about the component parts of the
ANGCVA procedure. Others give you the component parts of the ANGCVA
procedure; your job is to finish the calculations and provide an appropriate
interpretation. My guess is that you’ll find the questions sufficient to shore up

your understanding of the topic.
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With your introduction to ANOVA, you have been exposed to a widely used
statistical procedure. Ideally, you have gained an understanding of why many
statisticians think of it as an extension of the two-sample difference of means
tests and why it can be thought of as a procedure that tests the legitimacy of a
classification scheme. By the same token, you should have developed an un-
derstanding of why the procedure carries the name of analysis of variance,
inasmuch as the F ratio is based on two estimates of variance.

As to the specific components of the ANOVA procedure, you encountered
the concepts of the between- and within-groups sums of squares, as well as the
between- and within-groups estimates of variance. You also developed an appre-
ciation for the F ratio as an expression of the ratio of the two estimates of variance.

Beyond all of that, however, was an unstated lesson I hope you discovered
along the way—namely, that the process of learning statistical applications gets
easier and easier. It’s true that different research situations call for different
procedures. It's true that different procedures rest on different logical founda-
tions and different calculations. But beyond that, the process of testing a null
hypothesis remains fundamentally the same from application to application.
State the null; set the level of significance; calculate the test statistic; compare
the test statistic to a critical value; state a conclusion. As I mentioned before,
you keep encountering the same process, over and over and over again.

Some Other 3
You Should Know

There are still a few more things you should be aware of in connection with
ANOVA. In a sense, we've just scratched the surface of ANOVA, so let me
mention a few related matters.

As noted at the outset, the ANOVA procedure we considered in this chap-
ter is technically known as one-way analysis of variance. It is referred to as one-
way ANOVA because it is used in problems that deal with the relationship
between one variable and another variable. For example, we dealt with an ap-
plication that examined the variation in levels of unemployment (one variable)
by region (the other variable).

A more complex application of ANOVA is available, however. For exam-
ple, let’s say we wanted to look at how levels of unemployment vary by region
and type of city (manufacturing, retail, service, or other). In that case, we could
opt for a two-way ANOVA application. The procedure is referred to as two-way
ANOVA because it looks at how one variable varies on the basis of two other
variables. To take another example, we might be interested in how student test
scores vary by teaching method (lecture only, lecture plus discussion) and gen-
der composition of the class (all-male classes, all-female classes, and combined
male/female classes). This research question would also be suited for a two-way
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ANOVA application. For an excellent discussion of the two-way ANOVA pro-
cedure, consult Pagano (2001).

Second, the ANOVA application that we just considered was based on the

assumption that the samples were independent random samples. As was
the case with the difference of means tests, a modified ANOVA procedure is
available when the samples under consideration are matched or related. For a
discussion of that application, see Dunn (2001).

Finally, the Tukey's HSD test that we considered is only one of a variety of

post hoc test procedures that are available for use following an ANOVA appli-
cation. The selection of one post hoc test over another is usually a function of
several considerations. Discussions of various post hoc options are typically
found in more advanced texts.

ey Terms

ANOVA (one-way) group (sample) mean
between-groups degrees of freedom mean square between (MSg)
between-groups estimate of variance mean square within (MSy)
between-groups sum of squares (SSg) within-groups degrees of freedom
F ratio within-groups estimate of variance
grand (overall) mean within-groups sum of squares (SSy)

Fill in the blanks, calculate the requested values, or otherwise supply the
correct answer.

General Thought Questions

1.
2.

3.

-

The calculated test statistic for ANOVA is known as the ratio.
The F ratio is the ratio of the amount of variation the groups to
the amount of variation the groups.

Explain how to calculate the within-groups sum of squares.
Explain how to calculate the between-groups sum of squares.

. The between-groups sum of squares is transformed into an estimate of the

between-groups variance by dividing the between-groups sum of squares
by an appropriate number of

. The within-groups sum of squares is transformed into an estimate of the

ll:rlﬂ'\n'\_r\'rnl me t:r::rl::nf‘a ]'\11' Adividina the within-aroiime aiim of eoniarvec hu an
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appropriate number of

. The formula for the number of degrees of freedom for the within-groups

estimate of variance is , Where n equals the total number of cases
under consideration.
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10.
11.
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. The formula for the number of degrees of freedom for the between-

groups estimate of variance is , Where k equals the number of
groups or samples under consideration.

Another name for the between-groups estimate of variance is
Another name for the within-groups estimate of variance is

If you had a research problem appropriate for ANOVA and it was based
on the results from three samples, what would be the null hypothesis?

Application Questions/Problems

1.

Assume you had a research problem appropriate for ANOVA that was

based on six samples and a total of 36 cases.

a. How many degrees of freedom would be associated with the between-
groups estimate of variance?

b. How many degrees of freedom would be associated with the within-
groups estimate of variance?

. Assume the following:

.05 level of significance; five samples; 21 cases; SSg = 26; SSy, = 29
a. Calculate the F ratio.

b. What is the critical value?

c. What would you conclude?

. Assume the following:

.05 level of significance; four samples; 30 cases; SSg = 80; SSy, = 258
a. Calculate the F ratio.

b. What is the critical value?

c. What would you conclude?

. Assume the following:

.05 level of significance; three samples; 27 cases SS; = 13; SSy, = 23
a. Calculate the F ratio.

b. What is the critical value?

c. What would you conclude?

. Consider the following research data:

Sample 1 Sample 2 Sample 3
10 6 5
10 7 10
9 2 8
11 8 8
6 9 8
11 5 9
9 3 6
7 8 10
4 12
5 14
6
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State an appropriate null hypothesis.

What are the values of each category mean?
What is the value of the grand mean?

What is the value of the SSg?

What is the value of the SS,?

What is the value of the dfg?

What is the value of the dfy?

What is the value of the MS,;?

What is the value of the MSg?

What is the value of F?

Assuming that you were working at the .05 level of significance, what
would you conclude?

FeomTdR a0 o TP

6. An evaluation survey, designed to measure perceived program effectiveness,
was administered to a sample of 39 citizens who attended a community
crime-prevention meeting. Using a scale of 0 to 10, the respondents were
asked to rate the meeting in terms of effectiveness in presenting useful in-
formation. The responses were analyzed, based upon the place of residence
of the respondent—northern sector, southern sector, eastern, or western
sector—and the following results were found.

Northern Southern Eastern Western
2 3 4 2
4 5 2 5
6 7 8 6
3 1 7 7
5 4 7 2
1 5 6 4
7 3 8 5
1 4 6 6
4 6 6
5 6
6 6

State an appropriate null hypothesis.

What are the values of each category mean?
What is the value of the grand mean?

What is the value of the SSg?

What is the value of the SSy;?

What is the value of the dfg?

What is the value of the df,?

What is the value of the MSy,?

What is the value of the MSg?

What is the value of F?

Assuming you were working at the .05 level of significance, what
would you conclude?

Fem TR =m0 a0 TR
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7. An industrial psychologist has examined the levels of absenteeism (mea-
sured in terms of days absent per year) of workers in three different work
environments (morning shift, afternoon shift, and night shift). The results
of the study are summarized as follows:

Day Shift Afternoon Shift Night Shift
3 6 5
4 4 6
3 5 4
5 4 3
7 5
n= 5 n= 4 n= 5

State an appropriate null hypothesis.

What are the values of each category mean?
What is the value of the grand mean?

What is the value of the SSg?

What is the value of the 857

What is the value of the dfg?

What is the value of the dfy,?

What is the value of the MSy,?

What is the value of the MSg?

What is the value of F?

Assuming you were working at the .05 level of significance, what
would you conclude?

FopggdRmo e oon

8. A social psychologist has been studying the relationship between group
composition and level of cooperation on the part of preschool children in
a task-completion exercise. Each group is observed, and the number of co-
operative acts exhibited by each member of the group is recorded. Three
types of groups are under study: all male, all female, and mixed (both male
and female members). Results of the investigation are as follows:

All Male All Female Mixed Gender
4 6 3
4 5
3 8 6
1 4 q
3 8 7
4 8 6
n= 6 n= 6 n= 6




254 CHAPTER 10 Analyslis of Variance

State an appropriate null hypothesis.

What are the values of each category mean?
What is the value of the grand mean?

What is the value of the SSg?

What is the value of the SS;?

What is the value of the dfg?

What is the value of the dfy,?

What is the value of the MSy;?

What is the value of the MSg?

What is the value of F?

Assuming you were working at the .05 level of significance, what
would you conclude?
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